Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices.
نویسندگان
چکیده
This work examines the effect of copper nanoparticles (Cu NPs) on the photocurrent efficiency of silicon photovoltaic (Si PV) devices. An optimized synthesis of stable Cu NPs is reported together with a procedure for their immobilization on the Si PV surface. A comprehensive analysis of the photocurrent and power dependence of the Cu NPs surface coverage and size is presented. A decrease in photoconversion was observed for wavelengths shorter than ~500 nm, due to the Cu interband absorption. In the low surface coverage limit, where the level of aggregation was found to be low, the surface plasmon resonance absorption dominates leading to a modest effect on the photocurrent response. As the number of aggregates increased with the surface coverage, the photocurrent efficiency also increased, and a maximum enhancement power conversion of 16% was found for a 54 ± 6 NPs per μm(2) PV cell. This enhancement was attributed to SPR light scattering and trapping into the Si PV device. Higher surface coverage yielded numerous aggregates which acted as a bulk coating and caused a decrease in both photocurrent and power measurements.
منابع مشابه
Multi-Objective Optimization of Thin-Film Silicon Solar Cells with Metallic and Dielectric Nanoparticles
Thin-film solar cells enable a strong reduction of the amount of silicon needed to produce photovoltaic panels but their efficiency lowers. Placing metallic or dielectric nanoparticles over the silicon substrate increases the light trapping into the panel thanks to the plasmonic scattering from nanoparticles at the surface of the cell. The goal of this paper is to optimize the geometry of a thi...
متن کاملMetal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices
The influence of electromagnetic scattering by Au and silica nanoparticles placed atop silicon photovoltaic devices on absorption and photocurrent generation has been investigated. The nanoparticles produce substantial increases in power transmission into the semiconductor and consequently photocurrent response from 500 to 1000 nm. Increases in power conversion efficiency under simulated solar ...
متن کاملPlasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence
In this study, we sought to improve the light trapping of textured silicon solar cells using the plasmonic light scattering of indium nanoparticles (In NPs) of various dimensions. The light trapping modes of textured-silicon surfaces with and without In NPs were investigated at an angle of incidence (AOI) ranging from 0° to 75°. The optical reflectance, external quantum efficiency (EQE), and ph...
متن کاملExternal quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles
This study characterized the plasmonic scattering effects of indium nanoparticles (In NPs) on the front surface and silver nanoparticles (Ag NPs) on the rear surface of a thin silicon solar cell according to external quantum efficiency (EQE) and photovoltaic current-voltage. The EQE response indicates that, at wavelengths of 300 to 800 nm, the ratio of the number of photo-carriers collected to ...
متن کاملFully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells.
Herein, we constructed inverted PBDTTT-CF:PC70BM bulk-heterojunction organic solar cells by introducing Au nanoparticles to a ZnO buffer layer and a great improvement in energy conversion efficiency has been realized. To discover the positive roles of such plasmonic nanoparticles in the process of solar energy conversion, photovoltaic devices with the same architecture but different sized Au na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 45 شماره
صفحات -
تاریخ انتشار 2012